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Abstract—With the rapid development of online education systems, the challenge of educators accurately assessing
students' learning outcomes and cognitive levels has become a critical issue. Traditional evaluation methods often rely on
limited answer data, making it difficult to comprehensively reflect students' knowledge mastery. To address this, this
study innovatively proposes a cognitive diagnostic performance prediction method driven by large models. The core of
this approach lies in integrating advanced large model technology with the Neural Cognitive Diagnostic Model
(NeuralCDM), building an intelligent diagnostic prediction system to enhance evaluation accuracy. Specifically, this
method leverages fine-tuned Qwen large model weights in the NeuralCDM's cognitive diagnostic process to predict
students' responses to unanswered questions. By filtering high-confidence pseudo-labels from prediction results to
expand the answer dataset, the NeuralCDM is retrained to achieve improved performance prediction. Experimental
results show that this method improves accuracy, AUC, and F1 values by approximately 1.5%,2%, and 1.3%
respectively, demonstrating superior performance in academic prediction compared to traditional methods. This
advancement helps educators accurately estimate students' competency levels, providing crucial guidance for refining
teaching strategies and instructional priorities.

Keywords—Performance prediction, cognitive diagnosis, large language models, NeuralCDM
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Background: You are now a smart model for predicting student answers. The
array[[1, 1, '0.68', '4', 1], [1, 2,'0.94", '2', 1], [1, 3,'0.95', '3', 1], [1, 4, '1.00", 'I",
11, [1, 5,'0.86','s", 1], [1, 6, '1.00", '2, 1], [1, 24, '0.81", '7", 1], [1, 25,'0.95",'8",
1], [1, 26,'0.40", '8, 1], [1, 27,'0.91','9", 1], [1, 28, '0.90, '10', 1], [1, 29, '0.82',
'10, 11, [1, 50, '0.80', '11,12', 1], [1, 51,'0.88', 11", 1], [1, 52, '0.89', '11,13", 1],
[1, 49, '0.87", 14", 1], [1, 53, '0.96', '14', 1], [1, 54, '0.86", '12', 1], [1, 69, '0.83",
16,17, 11, [1, 66, '0.82', '17', 1], [1, 72, '0.96', '16', 1], [1, 73, '0.92','17', 1], [L,
68,'0.95', 17", 1], [L, 70, '0.76', '16', 0], [1, 87, '0.88", '19", 1], [1, 88, '0.94', '8,
1]]represents a set of student answer records, forming a two-dimensional array.
Each element is a one-dimensional array representing a single answer record. In
the one-dimensional array, the first element denotes the student ID, the second
element represents the question ID, the third element indicates the overall class
accuracy for this question, the fourth element indicates the knowledge point ID
associated with the question. If a question involves multiple knowledge points,
they are separated by commas, for example, '1,2' represents a question with
knowledge points 1 and 2. The fifth element represents the student's answer,
where 1 indicates a correct answer and 0 indicates an incorrect answer.\n
Requirement: Now, please predict the answer for the following question: [1,

251,'0.93', '43", '?"].Please fill in the question mark with a predicted value, and
return the array.
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