

BUCTOL: VS Code Based Integrated Online
Programming and Plagiarism Monitoring Platform

Yong Liu Zhe Li Yonghao Wu* Bin Du* Heng Jiang
College of Information Science and Technology

Beijing University of Chemical Technology
Beijing, China

appmlk@outlook.com, dubin@buct.edu.cn

Abstract—Detecting plagiarism in programming education

is a non-trivial academic task. With the number of students

being evaluated increasing and the level of difficulty in the test

questions also increasing, the reliance on manual checks to

verify if plagiarizing has occurred is becoming an inefficient

strategy. To assist teachers in identifying cases where

plagiarizing has occurred, we have developed a tool with

built-in plagiarism monitoring capabilities called Beijing

University of Chemical Technology Online Integrated

Programming Platform (BUCTOL). BUCTOL was developed

based on the open-source system HustOJ and the source

code editor Visual Studio Code (VS Code), which provides

a fast and accurate approach to aid in the detection of

plagiarizing in computer programming-related assignments,

exams, and competitions. The platform collects a variety of data

while students complete assignments, exams, and competitions,

which facilitates monitoring student activity to aid with the

identification of plagiarizing. To evaluate BUCTOL’s capacity

to prevent and monitor plagiarizing, we compare the code

repetition rate before and after the use of BUCTOL and find

that the code repetition rate was significantly reduced after the

adoption of BUCTOL. Additionally, we sent questionnaires to

92 students who utilized the platform. The results indicated

that students were generally positive about BUCTOL’s ability

to prevent and monitor plagiarizing.

Keywords—Programming education, Plagiarism monitoring,

Online judge, Data collection

Ⅰ. INTRODUCTION

The traditional method for teaching computer
programming in a classroom is relatively simple. Students
primarily learn by listening to theoretical lectures or
watching a practical demonstration. However, these learning
approaches are considered passive and often lack significant
student participation. To boost students’ practical competence,
programming assignments have become integral to these
assessments with submissions often sent via email [1].

However, this method introduces a slew of additional
issues. For example, email can only be used to receive daily
assignments, not to organize a multi-person live programming
environment, such as a final exam. Additionally, this manner
of code submission can easily breed plagiarizing [2], [3]. For
instance, a survey of 287 students at Monash and Swinburne

universities discovered that more than 70% of students at
both universities admitted to plagiarizing[4]. Besides,
teachers at Beijing University of Chemical Technology
(BUCT) had reported instances when the exact same code was
received in emails from many students.

Subsequently, as the number of students increases, email
as a submission medium has ceased to meet the current
demands of classroom education and assessment. This
increase also impacts the workload associated with
assessment leading to research into more effective uses of
computing resources to evaluate students’ programming
abilities reliably and rapidly [5]–[8].

Then, Online Judge (OJ) system stands out due to its
straightforward logic and rapid feedback capabilities and has
been adopted by many universities [9]. OJ is now widely
used to facilitate students in the development of programming
skills, in training and selection of contestants, in the provision
of automated program submissions, and in the judgment of
programming courses [9]. The rapid feedback capability of
the OJ platform enables live online exams, while relieving
teachers of the tedium of manually marking submissions, and
allowing assessments to scale to larger numbers of students.

Additionally, previous research has proposed several
methods for determining whether students’ submitted code
has been plagiarired [10], [11]. In OJ, the most frequently used
methods are code text matching and AST (Abstract Syntax
Tree) matching. Specifically, when a student submits code,
the OJ system compares the text and AST of the code to all
previously accepted correct answers for the same question. As
a result, a higher similarity result indicates that the
corresponding submission is more likely to be plagiarized. To
some extent, the OJ platform eliminates the naive plagiarizing
practice of students duplicating whole code because the OJ
platform can immediately notify the teacher when a complete
duplicate is discovered.

However, students still manage to find ways to plagiarize
within the OJ system. Specifically, after copying the correct
answer from elsewhere, students can evade the OJ system’s
plagiarism detection feature by inserting noisy code such as
nonsensical functions, nonsensical variables, or comments
into the correct answer. Although numerous methods of

Journal of Computer Technology and Education Vol.11 No.1 May 2023 13___

2325-0208 /© 2023ISEP

Fig. 1. BUCTOL Framework

Fig. 2. Snapshot of BUCTOL

plagiarism detection have been proposed [10] [11]. Teachers
are afraid that accidental faults may lead to wrongful
accusations against non-plagiarized students, thus causing
conflicts between teachers and students. Given the increasing
volume of code submissions, it is impractical to require
teachers to manually check for plagiarized code [12].

 To address this issue, we developed the Beijing University
of Chemical Technology Online Integrated Programming
Platform (BUCTOL) , which is based on the
Browser/Server (B/S) framework. BUCTOL enables
students to complete assignments, exams, and contests
entirely within the same webpage without navigating to
other webpages or programs. Additionally, BUCTOL
includes a robust set of built-in plagiarism detection
capabilities that enable teachers to observe or replay each
student’s code writing process in real-time. Once students

have finished an assignment or exam, this real-time review
helps identify, accurately and efficiently, if they are
plagiarizing code.

Table 1 EXAMPLE OF CODE EDITING PROCES

Next, we compared student behavior prior to using
BUCTOL and following the use of BUCTOL. The study
found that after students were required to use BUCTOL for
classroom exams, the code repetition rate decreased
significantly. Additionally, we evaluated BUCTOL’s ability
to influence student behavior with respect to plagiarism using
a student-oriented questionnaire. These results indicate that
BUCTOL can help ensure exam fairness and lower the
probability of plagiarizing.

The contributions of our study can be summarized as
follows:

Step Code

1 #

2 #include (studio. h

3 #include (studio. h)

4 #include (studio.)

5 #include (studio.)

6 #include (studio.h)

7 #include studio.h int main()

8 #include studio.h int main() (}

9 #include studio.h int main() (}

10 # include <>studio.h int main() (}

11 # include <studio.h> int main() (int n}

12 #include <studio.h> int main() (int n scanf}

13 #include <studio.h> int main() (int n scanf:}

Journal of Computer Technology and Education14___

2325-0208 /© 2023ISEP

• We developed BUCTOL on a B/S structure to enable
online programming and support online code by
students, and provide real-time feedback on results.
BUCTOL allows real-time monitoring of student
data for more effective online supervision and
invigilation, thus easing the workload of teachers.

• The plagiarism detection function we built in
BUCTOL supports real-time recording and playback
of students’ code editing behavior data, which
improves the efficiency of teachers’ judgment of
plagiarism.

• The analysis of student questionnaires revealed that
stu- dents generally believe that BUCTOL can help
reduce plagiarism, thus promoting fairness in
examinations and further urging students to improve
their programming skills.

The rest of the paper is organized as follows: Section II
introduces the organizational structure, technical framework
and development mode of BUCTOL, and describes the
complete use process of students. Section III introduces three
types of student behavior data collected by BUCTOL, and
describes how these data reflect whether students have
plagiarism. Section IVillustrates the effectiveness of
BUCTOL in maintaining the fairness of the examination
process from two perspectives: code repetition rate
comparison and a questionnaire. Section V introduces some
existing limitations and threats of BUCTOL. Section VI
introduces the work related to BUCTOL. Section VII
summarizes the functions of BUCTOL and describes the
future expansion and optimization of BUCTOL.

Ⅱ. FRAMEWORK AND COMPONENTS

BUCTOL was developed based on the open-source
system HustOJ [13] and the widely used source code editor
Visual Studio Code (VS Code). The overall framework of
BUCTOL is shown in Fig. 1.

BUCTOL stores user-related information, test question
information, and answer information in a MySQL database.
Among them, the central control system built on the
SpringBoot framework implements user login verification,
application acceptance, VS Code instance creation and
distribution, and instance destruction upon user exit. Nginx is
being used by the BUCTOL system to classify users and
distribute their requests to distinct VS Code instances based
on the cookies bound during instance creation. Users may
modify, build, and debug code in distinct, non-interfering
instances of VS Code, as well as submit answers. The
provided answers are stored in the MySQL database, where
they await execution and feedback from the HustOJ system.
After that, the results will be instantly relayed to users and
displayed on their webpage. Additionally, VS Code instances
run inside Docker containers, which prevents user code from
interfering with the physical server, hence maintaining the
system's security.

Fig.2 shows the main user interface of BUCTOL, where
the left side of the webpage shows the topic detail interface
provided by HustOJ, and the right side shows the VS Code

interface. Students can browse the webpage on the left side
and edit the code on the right side. After editing the code,
students can click the “Submit” button in the webpage to
submit their code for automated assessment.

Ⅲ. PLAGIARISM MONITORING
BUCTOL includes various data collecting functions that

enable the platform to record a series of student operations.
By monitoring the collected data, teachers can accurately and
efficiently determine whether students are plagiarizing while
completing assignments or exams. It is worth noting that
BUCTOL only collects data related to users' actions within
the BUCTOL environment and does not collect data from
other webpages or programs on the user's system, ensuring
that the data collecting function does not breach users' privacy.

BUCTOL collects data in three parts. The following
sections will be described in detail.

A. Accessing Test Question Data

The test question information collected from the OJ page,
including:

• The time when a student starts to participate in a
contest;

• The time when a student finishes participating in
a contest;

• The time when a student starts to try to answer a
question;

• The time when a student passes a question.

The data above can be used to determine the average time
students spend on each question. If a student’s answer time is
significantly shorter in comparison to the average time, then
that student is more likely to have plagiarized.

B. Editing behavior data

This is data collected from the VS Code environment
relating to the student’s actions during the completion of their
solution, including:

• A complete history of the students’ code editing.
Table I shows an example of a student’s code editing
process recorded by the BUCTOL platform, which
presents a process of writing C++ header files.

• Details of the students’ copy and paste activity in
BUCTOL;

• Details of the students’ program debugging activity in
BUCTOL.

 The above data completely captures each step in the
process of student’s development of their code solutions. This
data can then be used to identify potential plagiarism
behaviors. For instance, if a student adds meaningless
functions or variables to a correctly written code statement,
the student may be concealing plagiarism. Moreover, if a
student pastes a large amount of code from outside of
BUCTOL platform during exams, the student is more likely
to plagiarize.

BUCTOL: VS Code Based Integrated Online Programming and Plagiarism Monitoring Platform 15___

2325-0208 /© 2023ISEP

C. Unrelated operation data

 This relates to data captured on actions performed by
students during the answer process that is not related to the
completion of the assignment or exam, including:

• The number of times that a student minimized the
BUCTOL webpage;

• The number of times that a student moved the mouse
focus out of the BUCTOL webpage.

 The above data is crucial for the invigilator during the
exam because the teacher cannot closely monitor every
computer during an exam. Some students may attempt to
access software or websites outside of the BUCTOL
environment to search for answers, when not being directly
observed by the invigilator, in breach of the examination
regulations. Therefore, the unre- lated operation data can help
identify student activity which indicates an increased risk that
a student has plagiarized.

 In summary, the above data can help teachers monitor
student behavior and which can ultimately reduce the level of
students’ plagiarizing on assignments and exams. During
exams, teachers can also observe the data in real-time which
can facilitate more effective on-site supervision and
invigilation. For completed assignments, exams or
competitions, teachers can review aggregated data to help
them to more efficiently and accurately identify students who
may have plagiarized.

Table 2 RECORDED DATA FOR ONE EXAM

Student

ID

Minimize

events

Length of

time away

Debugging

events

Copy/Paste

events

A 1 1min 34 17/7

B 25 23mins 32 2/7

 For instance, Table II summarizes two students' (A and B)
examination performances. Taking student A as an example,
the student minimized the BUCTOL webpage just once
throughout the test, and the total time the mouse was off the
BUCTOL webpage was only one minute. Additionally,
Student A copied code 17 times in BUCTOL and pasted seven
times, indicating that the pasted text was more likely copied
inside the BUCTOL system. However, for student B, who
exited the BUCTOL webpage 25 times throughout the exam
and the mouse left the webpage for 23 minutes, this data
shows that the student has a higher probability of plagiarizing.
Additionally, student B copied twice in BUCTOL and pasted
seven times, indicating that the pasted text was more likely to
be copied from an external source. Therefore, Student B will
be required to take an additional exam to ensure fairness after
this exam.

IV. EVALUATION

In this section, we will illustrate the effectiveness of
BUCTOL in maintaining the fairness of the examination

process from two perspectives: code repetition rate
comparison and a questionnaire.

A. Code Repetition Rate Comparison
 We select two exams from within the same class group. In
one of the exams, students were required to use BUCTOL to
answer questions, while the other exam did not require the use
of BUCTOL. We then compared the rate of plagiarism
between the two exams.

 Specifically, we developed an AST-based code repetition
rate calculation tool. When a student submits code, this tool
can compare the code with all the correct answers submitted
for the same question. It will then show a copy of an existing
answer that best matches the submitted code and indicate the
level of code duplication. The duplication rate between two
answers is calculated by the similarity of two AST strings
generated from the the corresponding code.

Note that because the code in OJ is generally short, even
if a submission is not plagiarized at all, it may have a high
degree of similarity to other correct answers. Therefore, only
very high similarity (e.g., over 80% repetition rate) will be
used as a basis for determining plagiarism.

Fig. 3. Comparison Results

Fig.3 shows the comparison results of code repetition rate.
Where the x-axis of Fig.3 indicates the different code
repetition rates, and the y-axis indicates the proportion of
codes with the corresponding repetition rates among all code
submissions in a single examination.

As shown in Fig.3, at 0%-80% repetition rates, more
answers come from the exam with BUCTOL. While at 100%
repetition rates, more answers come from the exam without
BUCTOL. This result indicates that students' submitted codes
generally have lower repetition rates in the exam with
BUCTOL, while submitted codes generally have higher
repetition rates without BUCTOL.

In the exam that does not require the use of BUCTOL,
students generally wrote code in their local programming
environment and then copied the solution to the OJ system for
submission. We counted all correct answer submissions in this
exam and observed that 29% of the submissions

Journal of Computer Technology and Education16___

2325-0208 /© 2023ISEP

Table 3 Results of Student Questionnaires

No. Question

Feedback

1 (Completely Disagree) 2 3 4
5 (Completely

Agree)

1
Plagiarizing is a personal freedom, others have
no right to interfere

44.60% 21.70% 27.20% 1. 10% 5.40%

2
It is OK to allow others to plagiarise in regular
assignments and exams

21.70% 27.20% 35.90% 10.90% 4.30%

3
Plagiarize monitoring should be built into the
BUCTOL platform

7.60% 14. 10% 39. 10% 23.90% 15.20%

4
Grading of assignments and exam grades will be fairer

with the plagiarism monitoring feature built into the platform
13.00% 7.60% 30.40% 21.70% 27.20%

5
BUCTOL’s strict plagiarize detection feature
violate users privacy

20.70% 27.20% 38.00% 8.70% 5.40%

6
It doesn’t matter if you fail a course or
even fail to graduate, you don’t care about it

96.70% 2.20% 1. 10% 0.00% 0.00%

7
You are satisfied with your current programming

skills
19.60% 31.50% 33.70% 13.00% 2.20%

8
You are willing to spend a lot of time on
programming exercises

2.20% 3.30% 18.50% 39. 10% 37.00%

overlapped exactly when comparing students' correct answers.
This demonstrated that when BUCTOL was not used, students
exhibited significant levels of plagiarism and plagiarizing
behavior.

However, after using BUCTOL, the percentage of
submissions that overlapped was effectively reduced from 29%
to 14%. Therefore, the plagiarism rate of code submission by
students is greatly reduced by using BUCTOL. This also
shows that BUCTOL helps discourage students from
plagiarism and plagiarizing behaviors and reduces the overall
level of plagiarizing in assessments.

B. Questionnaire

To investigate the reasons leading to the comparison
results in Section IV-A, we designed a questionnaire to assess
student attitudes toward the plagiarism detection system in
BUCTOL. The questionnaire was sent to a total of 92 students
in two programming-related courses at Beijing University of
Chemical Technology all of whom had used BUCTOL for
class exams. Students were explicitly informed of the
details of the plagiarism detection functions within the system
before using BUCTOL.

The results and content of the questionnaire are shown in
Table III. The second column of Table III lists the eight
statements against which students were asked to give
feedback. Student attitudes towards the eight questions were
determined by the agreement level on a scale of 1 to 5 where
1 indicating complete disagreement and 5 indicating complete
agreement. The third to seventh columns of Table III show the
results of the questionnaire. For example, 44.60% of students
completely disagree that plagiarizing is personal freedom and
others have no right to interfere. Based on the results in Table
III, we can draw the following three conclusions:

(1) Based on the results of questions 1-2, most students
desire examinations and assessments to be fair and free of
plagiarism.

(2) Based on the results of questions 3-5, the students
believe that the monitoring functions within BUCTOL
promote fairness in exams and facilitate a reduction in
plagiarizing. The majority of students also believe that the
 data collection and monitoring functions of BUCTOL
do not violate student privacy.

(3) Based on the results of questions 6-8, it is clear that
most students are not satisfied with their current programming
skills, but are willing to spend time on programming practice
to improve their programming ability.

V. LIMITATIONS AND THREATS TO VALIDITY

In this section, we discuss the potential limitations and
threats to the validity of BUCTOL.

The first potential limitation relates to server performance
which could potentially constrain the complexity and of user
programs or the volume of users concurrently supported.
However, because OJ code can be executed within a matter of
seconds, no significant performance issues have been
observed. Specifically, the platform has supported hundreds
of live examinations conducted concurrently, with little
additional latency encountered.

Secondly, the data monitoring function may be too
sensitive, creating false positive indicators of plagiarizing
behavior and thus not accurately reflecting the actual level of
student plagiarizing. However, an evaluation of an individual
student will be based on a combination of monitoring data
across multiple assignments and exams. While the tool
provides input on the risk of plagiarizing for an assignment,
we will not rashly make a judgment of plagiarizing behavior.
Instead, it can help focus on where the manual review can be
most useful employed where a high level of risk is identified.

VI. RELATED WORK

Currently, a number of studies have been conducted in the
field of auxiliary programming education to aid teachers in the
delivery and assessment of computer programming. For

BUCTOL: VS Code Based Integrated Online Programming and Plagiarism Monitoring Platform 17___

2325-0208 /© 2023ISEP

example, Codecademy is a dedicated learning resource
platform dedicated to teaching many different coding and
programming skills. It offers a comprehensive set of text-
based courses on web development and related programming
languages. Students can pick which language they want to
learn and advance through lessons which provide instant
feedback on their code. However, while it focuses on entry
level programming skills, it is not designed for university
level coding labs, examinations, and competitions. To address
this gap, we developed BUCTOL. BUCTOL enables students
to complete assignments, exams, and competitions entirely
within the same webpage without having to move to other
webpages or programs. In addition, BUCTOL includes a
powerful set of built-in plagiarism detection functions,
enabling teachers to observe and replay the entire code writing
process for each student. When students complete their
assignments or exams, these functions can help identify where
plagiarizing may have occurred. By reducing the student
reliance on plagiarizing behaviors, BUCTOL can be a
significant tool in allowing students to learn to code, allowing
teachers to focus more of their time on teaching, rather than
on plagiarism detection.

VII. CONCLUSION AND FUTURE WORK

We have developed BUCTOL, an online programming
education platform with built-in plagiarism monitoring
functions. Through BUCTOL, students can complete all
programming-related assignments, exams and competitions
from within a single webpage. Different from the traditional
offline programming tasks, it enhances students' initiative,
meet multi person real-time programming, real-time criticism
and real-time feedback.

To help teachers identify plagiarizing behaviors in
programming education, The built-in plagiarism monitoring
functions can calculate the code repetition rates based on AST.
When students submit the code, compare the code with all the
correct answers submitted for the same question, indicates the
level of code duplication and supports real-time recording and
playback of student code editing behavior data. Teachers can
browse this data in real-time to ensure a more efficient and
accurate examination supervision process which also aids in
plagiarism identification.

We compared the code repetition before and after the use
of BUCTOL in the examinations process. The comparison in
results clearly demonstrated a reduction in the repetition rate
of exams after adopting the BUCTOL platform. Therefore,
the above results show that BUCTOL can prevent students
from engaging in plagiarism and thus reduce the occurrence
of plagiarizing. In addition, using a questionnaires, involving
92 students who have used BUCTOL, we found a highly
positive attitude within students towards the inclusion of
plagiarism monitoring functions in BUCTOL. Most of the
students agreed that BUCTOL’s plagiarism monitoring
function could promote fairness in exams and reduce the
occurrence of plagiarizing.

For future work, our goal is to develop a more efficient,
accurate and automated plagiarizing monitoring function. We
plan to extend the collection of students' actions in the

programming process to more accurately record the students'
answering process. We also plan to automatically aggregate
all the data monitored by BUCTOL, and use algorithms to
automatically generate the probability of each student's
plagiarizing behavior, so as to further improve the efficiency
and accuracy of the teacher's identification of plagiarizing
behavior.

ACKNOWLEDGMENT

The work is supported by the National Natural Science
Foundation of China (Grant nos. 61902015, 61872026 and
61672085), and Educational research projects of Beijing
University of Chemical Technology (Grant nos,
2021BHDJGYB16 and G-JG-PTKC202107).

REFERENCES

[1] S. Lonn and S. D. Teasley, “Saving time or innovating
practice:Investigating perceptions and uses of learning management
systems,” Computers & education, vol. 53, no. 3, pp. 686–694, 2009.

[2] J. Baugh, P. Kovacs, and G. Davis, “Does the computer programming
student understand what constitutes plagiarism,” Issues in
InformationSystems, vol. 13, no. 2, pp. 138–145, 2012.

[3] G. Cosma and M. Joy, “Towards a definition of source-code
plagiarism,” IEEE Transactions on Education, vol. 51, no. 2, pp. 195–
200, 2008.

[4] J. Sheard, M. Dick, S. Markham, I. Macdonald, and M. Walsh,
“Cheating and plagiarism: Perceptions and practices of first year it
students,” in Proceedings of the 7th annual conference on Innovation
and technology in computer science education, 2002, pp. 183–187.

[5] E. L. Glassman, J. Scott, R. Singh, P. J. Guo, and R. C. Miller,
“Overcode: Visualizing variation in student solutions to programming
problems at scale,” ACM Transactions on Computer-Human
Interaction (TOCHI), vol. 22, no. 2, pp. 1–35, 2015.

[6] S. Kaleeswaran, A. Santhiar, A. Kanade, and S. Gulwani, “Semi
supervised verified feedback generation,” in Proceedings of the 2016
24th ACM SIGSOFT International Symposium on Foundations of
Soft- ware Engineering, 2016, pp. 739–750.

[7] S. Gulwani, I. Radi ek, and F. Zuleger, “Feedback generation
for performance problems in introductory programming
assignments,” in Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering,
2014, pp. 41–51.

[8] R. Singh, S. Gulwani, and A. Solar-Lezama, “Automated
feedback generation for introductory programming assignments,” in
Proceedings of the 34th ACM SIGPLAN conference on Programming
language design and implementation, 2013, pp. 15–26.

[9] S. Wasik, M. Antczak, J. Badura, A. Laskowski, and T. Sternal,
“A survey on online judge systems and their applications,”ACM
Computing Surveys (CSUR), vol. 51, no. 1, pp. 1–34, 2018.

[10] S. Burrows, S. M. Tahaghoghi, and J. Zobel, “Efficient plagiarism
detection for large code repositories,” Software: Practice and
Experience, vol. 37, no. 2, pp. 151–175, 2007.

[11] L. Luo, J. Ming, D. Wu, P. Liu, and S. Zhu, “Semantics-based
obfuscation-resilient binary code similarity comparison with
applications to software plagiarism detection,” in Proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering, 2014, pp. 389–400.

[12] C. Kustanto and I. Liem, “Automatic source code plagiarism
detection,” in 2009 10th ACIS International conference on software
engineering, artificial intelligences, networking and parallel
/distributed computing. IEEE, 2009, pp. 481–486.

[13] H.-b. Zhang, “Design and implementation of the open cloud platform
based open source online judge system,” Comp. Sci., vol. 39, no. 11A,
pp. 339–343, 2012.

Journal of Computer Technology and Education18___

2325-0208 /© 2023ISEP

